A NOTE ON CONSTRUCTION OF BIB DESIGNS

B. K. SAMANTA

Jute Agricultural Research Institute, Barrackpore (W. B.) (Received : June, 1986)

SUMMARY

A method of construction of BIB designs is given. This leads to a new series of BIB designs.

Keywords : Balanced incomplete blocks; a-resolvable designs.

Introduction

If the blocks of a Balanced Incomplete Block (BIB) design with parameters v, b, r, k, λ can be grouped into t groups of β blocks each, such that each group contains each treatment exactly α times then the design is said to be α -resolvable. Further if any pair of blocks belonging to the same group contains q_1 treatments in common where as any pair of blocks from different groups contain q_2 treatments in common, then the design is said to be affine α -resolvable. For an affine α -resolvable BIB design we have necessarily (Kageyama, 1973) : $b = \beta t$, $r = \alpha t$, $v\alpha = \beta k$, $q_1 =$ $(\alpha - 1) k/(\beta - 1) = k + \lambda - r$, $q_2 = \alpha k/\beta = k^2/v$. In this note a method of construction of BIB design is proposed. Applying this method to affine α -resolvable BIB design for $\alpha > 1$ a new series of BIB design is obtained.

2. Main Result

THEOREM. The existence of an affine α -resolvable BIB design with parameters $v, b = \beta t, r = \alpha t, k, \lambda$, where $q_1 = k(\alpha - 1)/\beta - 1 \ge 2, \alpha = \beta - 1, k \ge 2\alpha/\alpha - 1, (\alpha > 1)$, implies the existence of a BIB design with

A NOTE ON CONSTRUCTION OF BIB DESIGNS

parameters v^* , b^* , r^* , k^* and λ^* where $v^* = v$, $b^* = t(\frac{\beta}{2})$, $r^* = \binom{\alpha}{2}$, $k^* = k (\alpha - 1)/\alpha$, $\lambda^* = t_1\binom{\alpha}{2} + t_2\binom{\alpha-1}{2}$ where $t_1 = \lambda - t(\alpha - 1)$, $t_2 = t\alpha - \lambda$. The new design is constructed by forming blocks from the pairwise intersection of blocks belonging to the same group of the given affine α -resolvable BIB design.

Proof. In any affine α -resolvable BIB design any pair of blocks of a particular group have $k(\alpha - 1)/(\beta - 1)$ treatments common. Under the condition $(\beta - 1) = \alpha$, $k(\alpha - 1)/(\beta - 1) = k(\alpha - 1)/\alpha$ is the number of treatments which will form a block. Therefore it is obvious that $v^* = v$ and $k^* = k(\alpha - 1)/\alpha$. There are β blocks in each group and for t groups the total number of blocks will be $t(\frac{\beta}{2})$ and hence $b^* = t(\frac{\beta}{2})$. In each group each treatment occurs $(\frac{\alpha}{2})$ times and for t groups the total number of replications is $t(\frac{\alpha}{2})$ and hence $r^* = t(\frac{\alpha}{2})$. Since $\beta = \alpha + 1$ there are t_1 groups in which a pair of treatments occurs $(\alpha - 1)$ times where $t_1 + t_2 = t$, and $t_1 \alpha + t_2 (\alpha - 1) = \lambda$. Hence the number of times that a pair of treatments above. This completes the proof.

For example consider the affine 3-resolvable BIB design with parameters $v = 16, b = 20, r = 15, k = 12, \lambda = 11$, whose blocks are as follows:

(5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16); (1, 2, 3, 4, 9, 10, 11, 12, 13, 14, 15, 16); (1, 2, 3, 4, 5, 6, 7, 8, 13, 14, 15, 16); (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12); (2, 3, 4, 6, 7, 8, 10, 11, 12, 14, 15, 16); (1, 3, 4, 5, 7, 8, 9, 11, 12, 13, 15, 16); (1, 2, 4, 5, 6, 8, 9, 10, 12, 13, 14, 16); (1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15); (2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 16); (1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15); (1, 2, 4, 5, 6, 7, 10, 11, 12, 13, 15, 16); (1, 2, 3, 5, 6, 8, 9, 10, 11, 12, 13, 15, 16); (1, 2, 3, 5, 6, 8, 9, 10, 11, 12, 13, 15, 16); (1, 2, 3, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15); (1, 2, 3, 5, 6, 8, 9, 10, 11, 13, 15, 16); (1, 2, 3, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15); (1, 2, 3, 5, 7, 8, 10, 11, 12, 13, 14, 16); (1, 2, 3, 4, 5, 6, 7, 9, 11, 12, 13, 14, 16); (1, 3, 4, 5, 6, 7, 9, 11, 12, 13, 14, 16); (1, 3, 4, 5, 6, 7, 9, 11, 12, 13, 14, 16); (1, 3, 4, 5, 6, 7, 9, 11, 12, 13, 14, 16); (1, 3, 4, 5, 6, 7, 9, 11, 12, 13, 14, 16); (1, 3, 4, 5, 6, 7, 9, 11, 12, 13, 14, 16); (1, 3, 4, 5, 6, 7, 9, 11, 12, 13, 14, 16); (1, 3, 4, 5, 6, 7, 9, 11, 12, 13, 14, 16); (1, 3, 4, 5, 6, 7, 9, 11, 12, 13, 14, 16); (1, 3, 4, 5, 6, 7, 9, 11, 12, 13, 14, 16); (1, 3, 4, 5, 6, 7, 9, 11, 12, 13, 14, 16); (1, 3, 4, 5, 6, 7, 9, 11, 12, 13, 14, 16); (1, 3, 4, 5, 6, 7, 9, 11, 12, 13, 14, 15); 1, 2, 3, 6, 7, 8, 9, 10, 12, 13, 15, 16).

Hence t = 4, $t_1 = 1$, $t_2 = 4$, $\alpha = 3$ and $\beta = 4$.

The parameters of the BIB design derived by the given method are $v^* = 16$, $b^* = 30$, $r^* = 15$, $K^* = 8$ and $\lambda^* = 7$. The blocks of this design are given below.

(9, 10, 11, 12, 13, 14, 15, 16); (5, 6, 7, 8, 13, 14, 15, 16); (5, 6, 7, 8, 9, 10, 11, 12); (1, 2, 3, 4, 13, 14, 15, 16); (1, 2, 3, 4, 9, 10, 11, 12); (1, 2, 3, 4, 5, 6, 7, 8); (3, 4, 7, 8, 11, 12, 15, 16); (2, 4, 6, 8, 10, 12, 14, 16); (2, 3, 6, 7, 10, 11, 14, 15); (1, 4, 5, 8, 9, 12, 13, 16); (1, 3, 5, 7, 9, 11, 13, 15);

203

JOURNAL OF THE INDIAN SOCIETY OF AGRICULTURAL STATISTICS

(1, 2, 5, 6, 9, 10, 13, 14); (3, 4, 7, 8, 9, 10, 13, 14); (2, 4, 5, 7, 10, 12, 13, 14);15): (2, 3, 5, 8, 9, 12, 14, 15); (1, 4, 6, 7, 10, 11, 13, 16); (1, 3, 6, 8, 9, 11, 14, 16); (1, 2, 5, 6, 11, 12, 15, 16); (3, 4, 5, 6, 9, 10, 15, 16); (2, 4, 6, 8, 9, 11, 13, 15); (2, 3, 5, 8, 10, 11, 13, 16); (1, 4, 6, 7, 9, 12, 14, 15); (1, 3, 5, 7, 10, 12, 14, 16); (1, 2, 7, 8, 11, 12, 13, 14); (3, 4, 5, 6, 11, 12, 13, 14); (2, 4, 5, 7, 9, 11, 14, 16); (2, 3, 6, 7, 9, 12, 13, 16); (1, 4, 5, 8, 10, 11, 14, 15); (1, 3, 6, 8, 10, 12, 13, 15); (1, 2, 7, 8, 9, 10, 15, 16).

ACKNOWLEDGEMENTS

I thank Dr. G. M. Saha of Indian Statistical Institute, Calcutta, for examining this result and the referee for helpful comments.

REFERENCES

- [1] Bose, R. C. (1942) : A note on the resolvability of balanced incomplete block designs, Sankhya, 6: 105-110.
- Kageyama, S. (1973): On µ-resolvable and affine µ-resolvable balanced incom-[2] plete block designs, Ann. Statist., 1: 195-203.
- [3] Kageyama, S. (1973): A series of three designs, J. Japan Statist. Soc., 3: 67-68

204